Music Theory and Practice – Ring of Fifths
Updated: Aug 9, 2021
A Guide to the Circle of Fifths and Why You Should Know Them

If you are new to music theory and/or composing and songwriting, the image above may seem a bit daunting. However once you get used to using it regularly in your playing, improvising, and music writing, it will become a part of your musical vocabulary. The Circle of Fifths is a helpful tool for seeing relationships between keys, chords, and pitches.
What Is The Circle of Fifths?
The Circle of Fifths is a common topic for new music theory students. Images like the one above are often given in music curriculum and printed on posters in music rooms. Even if a musician commits the circle to memory, they aren't sure what to do with it. Many times, musicians simply disregard the Circle of Fifths as tedious theory and fail to see how helpful it is. And it is helpful because the Circle of Fifths shows relationships between pitches, keys, and chords. Our circle uses the color wheel to further illustrate these relationships. We are not going to discuss all of the relationships depicted on the Circle of Fifths in this post, we are going to cover a few of the basics.
The Circle of Fifths shows the relationship between the 12 tones of the chromatic scale. In music theory, we use capital letters to represent major and lowercase letters to represent minor. On our circle, the larger, outer circles represents major keys and the smaller, inner circles represent minor keys. The number of sharps or flats in each of the key signatures are listed next to the minor keys. Since there are 12 chromatic keys, we can discuss the positions of the keys as where they would appear on a clockface.
At the 12 o'clock position, we see "C" in the large red circle and in the smaller pink circle, we see "a". Therefore "C" is a C major and "a" is a minor. You will note that below the a circle, it reads "0 flats, 0 sharps." This is because C major and a minor do not have any flats or sharps in their respective key signatures and in fact, share the same key signature with no flats or sharps. When a major and a minor key share the same key signature, they are called "relative keys." So the relative minor of C major is a minor and the relative major of a minor.
Moving from the 12 o'clock position to the 1 o'clock position, we move up an interval of a perfect fifth, from C (a) to G (e). At 2 o'clock, we move on to D (b), and at 3 o'clock we have A (f♯), and so on. Each time we move up on "hour" on the circle in the clockwise, we add a sharp to (or remove a flat from) the key signature. So at "C", there are no flats or sharps and at "G", we have one sharp and "D" has two. By the time we reach the 5 o'clock position of "B", we have five sharps. We keep adding sharps until we reach C♯ (a♯) at the 7 o-clock position which has seven sharps.
Enharmonic Equivalents
We can also say the B (g♯) is enharmonically equivalent to C♭(a♭) which has seven flats. The next two keys at the 6 and 7 o'clock positions also have enharmonically equivalent keys; G♭ (e♭m) has the enharmonic equivalent is F♯ (d♯m) and C♯ (a♯) has the enharmonic equivalent of D♭ (b♭m).
Looking at a piano key graphic below, you can see the progression by fifths up the piano keyboard spans nearly all 88 keys. For simplicity's sake, our graphic below shows the flatted version of the enharmonic notes only. It is important note that B (g♯), G♭ (e♭m), and D♭ (b♭m) are the generally preferred spellings of these keys. The circle beginning at C and moving clockwise, we find the pitches of C, G, D, A, E, B, F♯/G♭, C♯/D♭, G♯/A♭, D♯/E♭, A♯/B♭, F, and finally we return to C. So the first relationship that the Circle of Fifths shows is ascending perfect fifths.
